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Abstract

We present FastPitch, a fully-parallel text-to-speech model based on FastSpeech,
conditioned on fundamental frequency contours. The model predicts pitch con-
tours during inference, and generates speech that could be further controlled with
predicted contours. FastPitch can thus change the perceived emotional state of the
speaker or put emphasis on certain lexical units. We find that uniformly increasing
or decreasing the pitch with FastPitch generates speech that resembles the volun-
tary modulation of voice. Conditioning on frequency contours improves the qual-
ity of synthesized speech, making it comparable to state-of-the-art. It does not
introduce an overhead, and FastPitch retains the favorable, fully-parallel Trans-
former architecture of FastSpeech with a similar speed of mel-scale spectrogram
synthesis, orders of magnitude faster than real-time.

1 Introduction

Recent advances in neural text-to-speech (TTS) systems brought real-time synthesis of naturally
sounding, human-like speech. The leading models are auto-regressive and computationally expen-
sive due to the high temporal resolution of the audio signal. Feed-forward models are able to syn-
thesize mel-spectrograms orders of magnitude faster than auto-regressive models. For instance Fast-
Speech [21], which is based on the feed-forward Transformer [5], explicitly predicts the duration of
every input symbol, and infers the entire spectrogram in parallel. Feed-forward models synthesize
reasonably sounding speech even when conditioned on imperfect alignments of output frames with
input symbols. However, these models still fail to match the quality of auto-regressive generation,
and pose several challenges in training [21, 31].

Text-to-speech models are often conditioned on additional qualities of speech such as linguistic fea-
tures and fundamental frequency [26, 27]. Introduction of neural networks into TTS made possible
accurate modeling of these qualities. In particular, fundamental frequency modeled with a neural
network has been repeatedly shown to improve the quality of synthesized speech in a concatena-
tive model [6], and later fully neural models [11, 12]. Conditioning on fundamental frequency with
voiced/unvoiced decisions is a common approach to augmenting the model with singing capabili-
ties [24, 13], or adaptability to other speakers [11].

In this paper we propose FastPitch, a feed-forward model based on FastSpeech that improves Fast-
Speech and matches the state-of-the-art auto-regressive TTS models by conditioning on fundamental
frequency estimated for every input symbol, which we refer to simply as a pitch contour. We show
that explicit modeling of such pitch contours addresses the quality shortcomings of feed-forward
Transformer. These shortcomings most likely arise from collapsing different pronunciations of the
same phonetic units in the absence of enough linguistic information in the textual input alone. By
conditioning on fundamental frequency, we provide the model with more linguistic information and
prevent this collapse. In addition, conditioning on fundamental frequency improves convergence,
and eliminates the need for knowledge distillation of mel-spectrogram targets used in FastSpeech.
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Because the model learns to predict pitch, it gaines new practical applications like shifting the fun-
damental frequency, putting emphasis, adding expressiveness, and interactive editing of the pitch
contour during synthesis. Constant offsetting of F0 values with FastPitch produces naturally sound-
ing low- and high-pitched variations of voice that preserve the perceived identity of the person, and
outperforms the ordinary pitch shifting algorithms. We conclude that the model is expressive and
learns to mimic the action of vocal chords, which happens during the voluntary modulation of voice.

Combined with WaveGlow [19], FastPitch is able to synthesize mel-spectrograms over 30× faster
than real-time, using PyTorch library functions and not resorting to kernel-level optimiza-
tions [18]. In Mean Opinion Score evaluations, FastPitch scored higher than our implementation
of Tacotron2 [23].

We would like to note that a concurrently developed idea of pitch prediction in FastSpeech [20] has
been published in between the releases of our source code and this paper describing FastPitch.
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Figure 1: Architecture of FastPitch follows FastSpeech [21]. The additional PitchPredictor mod-
ule has a similar architecture as DurationPredictor and predicts a single scalar for every temporal
location. Those values are embedded with a 1-D convolution, and added to the signal through a
residual connection. The model is trained on ground truth input symbol durations d and pitch values
p. The predicted values d̂ and p̂ are used during inference.

2 Model Description

The architecture of FastPitch is shown in Figure 1. It is based on FastSpeech and composed mainly
of two feed-forward Transformer (FFT) stacks [5]. The first one operates in the resolution of input
tokens, the second one in the resolution of the output frames. Let x = (x1, . . . , xt) be the sequence
of input lexical units, and y = (y1, . . . , yT ) be the sequence of target mel-scale spectrogram frames.
The first FFT stack produces the hidden representation

h = FFTransformer(x). (1)

The hidden representation h is used to make predictions about the duration and average pitch of
every character with a 1-D CNN

d̂ = DurationPredictor(h)
p̂ = PitchPredictor(h)

(2)

where d ∈ Nt and p ∈ Rt. Next, the pitch is projected to match the dimensionality of the hidden
representation h ∈ Rt×d and added to h. The resulting sum g is discretely up-sampled and passed
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to the output FFT, which produces the output mel-spectrogram sequence

g = h+ PitchEmbedding(p)
ŷ = FFTransformer([g1, . . . , g1︸ ︷︷ ︸

d1

, g2, . . . , g2︸ ︷︷ ︸
d2

, . . . gt, . . . , gt︸ ︷︷ ︸
dt

]). (3)

The model optimizes mean-squared error (MSE) between the predicted and ground-truth modalities

L = ‖ŷ − y‖22 + α‖p̂− p‖22 + γ‖d̂− d‖22 (4)

Ground truth p and d are used during training. During inference, predicted p̂ and d̂ are used during
inference.

2.1 Duration of Input Symbols

Durations of input symbols are estimated with a Tacotron2 model trained on LJSpeech-1.1. Let
A ∈ Rt×T be the final Tacotron2 attention matrix. The duration of the ith input symbol is [21]:

di =

T∑
c=1

[argmax
r

Ar,c = i]. (5)

Because Tacotron2 has a single attention matrix, we do not need to choose between attention heads,
as it would be necessary with a multi-head Transformer model.

FastPitch is robust to the quality of alignments. We observe that durations extracted with distinct
Tacotron2 models tend to differ. E.g., for the same input utterance, the longest durations are assigned
approximately at the same locations, but possibly to different characters (Figure 2.1). Surprisingly,
those different alignment models produce FastPitch models, which synthesize speech of similar
quality. We found that even constant durations, e.g., five output frames per input character, still
produce intelligible speech.
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Figure 2: Varying character durations extracted with different Tacotron2 models allow to train
FastPitch checkpoint of comparable quality (cf. MOS scores in Table 1 and Table 2). The examined
utterance comes from the LJSpeech-1.1 training subset.

2.2 Pitch of Input Symbols

We obtain ground truth pitch values through acoustic periodicity detection using the accurate au-
tocorrelation method [3]. Let a be the windowed signal, calculated using Hann windows. The
algorithm finds an array of maxima of the normalized autocorrelation function rx

ra(τ) =

∫ T−τ
0

at at+τ dt∫ T
0
a2t dt

rx(τ) =
ra(τ)

rw(τ)
,

(6)

where ra denotes autocorrelation of the windowed signal, and rw autocorrelation of the Hann win-
dow, which has a closed form [3]. These maxima become the candidate frequencies. The unvoiced
candidate is present at every time step. Then, the lowest-cost path through the array of candidates
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Figure 3: Fundamental frequency estimated for the utterance In being comparatively. Raw val-
ues are shown in blue, values averaged over input characters in green. Character durations have
been extracted with a Tacotron2 model. Silent characters have zero duration and no fundamental
frequency.

is calculated with the Viterbi algorithm. The path minimizes the transitions between the candidate
frequencies

TransitionCost(F1, F2) =


0 if F1 = 0 and F2 = 0

VoicedUnvoicedCost if F1 = 0 xor F2 = 0

OctaveJumpCost if F1 6= 0 and F2 6= 0.

(7)

In order to get one F0 value for every mel-scale spectrogram frame, we change the default window
size from 0.01 s to 0.0116 s, which corresponds to the input span for a single mel-scale spectrogram
frame, calculated using Short-time Fourier Transform (STFT) with hop size 256 and sampling rate
22 050Hz.

F0 values are averaged over every input symbol using the extracted durations d (Figure 3). Unvoiced
values are excluded from the calculation. For training, the values are standardized to mean of 0 and
standard deviation of 1. If there are no voiced F0 estimates for a particular symbol, it’s pitch is being
set to 0.

Training on non-averaged F0 values, i.e., one value per every mel-spectrogram frame, introduced
artifacts and inconsistencies into the synthesized speech, even when the model has been conditioned
on ground-truth pitch contours, meaning that the model was not able to learn to predict, nor synthe-
size in a coherent manner. Similar artifacts and behavior have been observed in the models which
synthesize singing voices [24, 13]

Following [11], we tried averaging to three pitch values per every symbol, in the hope to capture
the beginning, middle and ending pitch for every symbol. The quality of speech with three pitch
values per input character did not have the artifacts introduced by one pitch value per every output
frame. However, during a blind test it was judged inferior to having one pitch value for every input
character (Section 3.2).

3 Experiments

The source code1 for FastPitch and synthesized samples2 are available online. We synthesize wave-
forms for evaluation for all models with a single pre-trained WaveGlow vocoder [19].

3.1 Setup

The model is trained on the publicly available LJSpeech 1.1 dataset [8] which contains approxi-
mately 24 hours of single-speaker speech recorded at 22 050Hz. We manually correct erroneous
transcriptions for samples LJ034-0138 and LJ031-0175, which we have discovered during an in-
spection with a speech recognition model.

Different authors tend to use custom training/development/test splits of LJSpeech 1.1. We are cau-
tious to use the same split, which was used to train WaveGlow. Overlooking this detail, especially

1https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/
SpeechSynthesis/FastPitch

2https://fastpitch.github.io/
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Table 1: Single speaker Mean Opinion Scores gathered on Amazon Turk. Both models have been
trained in a similar setup on the LJSpeech-1.1 dataset and character-level input.

Model MOS

Tacotron2 (Mel + WaveGlow) 3.946± 0.134
FastPitch (Mel + WaveGlow) 4.080± 0.133

when using an off-shelf WaveGlow checkpoint, can easily leak the training data during evaluation
and inflate the results. We calculate 80-band mel-scale spectrograms with Short-time Fourier trans-
form using window length of 1024 samples and hop size of 256.

Parameters of the model mostly follow FastSpeech [21]. The embedded and hidden vectors in the
network have d = 384 dimensions. The input and output FF Transformer modules have 6 layers
each, and a single 64-dimensional attention head. Each feed-forward block of a FF Transformer
layer is composed of a 1-D convolution with kernel size 3 and 384/1536 input/output channels,
ReLU activation, a second 1-D convolution with kernel size 3 and 1536/384 input/output filters,
followed by Dropout and Layer Norm.

Duration Predictor and Pitch Predictor have the same convolutional architecture. They are composed
of a 1-D convolution with kernel size 3 and 384/256 channels, and a second 1-D convolution with
256/256 channels, each followed by ReLU, Layer Norm and Dropout layers. The last layer is linear
and projects every 256-channel vector into a single scalar. We use Dropout rate of 0.1 in every
Dropout layer, including Dropout on attention heads.

The described models were trained on characters. We tried the mixed approach of training simul-
taneously on phonemes and characters [9]. Both word- and sentence-level mixing introduced un-
pleasant artifacts into the synthesized speech. Standard input cleaning has been applied: numerals
and common abbreviations have been heuristically expanded (20→ twenty, dr.→ doctor, etc.). The
sentences have been converted to lower-case ASCII characters.

FastPitch has been trained on 8× NVIDIA V100 GPUs with automatic mixed precision [16], al-
though similar results can be achieved with longer, full precision training. The training converges
after 2 hours, and full training takes 5.5 hours. We use the LAMB optimizer [30] with learning rate
0.1, β1 = 0.9, β2 = 0.98, and ε = 1e−9. In comparison with ADAM, it stabilizes the training
at higher learning rates. Learning rate is increased for a warmup period of 1000 steps, and then
decayed according to the Transformer schedule [28]. We apply weight decay of 1e−6, and train
with batch size of 256, split into 32 samples per GPU.

3.2 Evaluation

3.2.1 MOS Scores

We have compared our FastPitch model with Tacotron2 (Table 1). The samples have been scored
on Amazon Turk with the Crowdsourced Audio Quality Evaluation Toolkit [4]. We have generated
speech from the first 30 samples from our development subset of the LJSpeech-1.1. At least 250
scores have been gathered per every model, with the total of 60 unique Turkers participating in the
study. In order to qualify, the Turkers were asked to pass a hearing test.

3.2.2 Pairwise Comparisons

Generative models pose difficulties when it comes to hyperparameter tuning. The quality of gener-
ated samples is highly subjective, and running large-scale studies time-consuming and costly. While
major differences in quality of the outputs are captured by the developers, minor adjustments are
challenging. In order to efficiently score a higher number of models and avoid score drift when
the same person scores samples over a long period of time, we have investigated the approach of
comparing pairs of samples. Pairwise comparisons allow to construct a global ranking assuming
that skill ratings are transitive [1]. The approach is best known from building large-scale rankings
of human players in chess, sports and on-line games.

We have run an internal study, in which over 50 participants scored randomly selected pairs of
samples, although more efficient selection strategies than random exist [29]. We used the Glicko-2
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rating system [7] to build a ranking based on those scores. It is known in the context of automatic
scoring of generative models [17]. Every participant scored 20 pairs on average. We present the
scores for a relevant subset of scored models (Figure 4): FastPitch with 1, 2 and 4 attention heads, 6
and 10 transformer layers, and pitch predicted in the resolution of three values per input token. The
method allowed us to assess the effect of a number of hyper-parameters on the subjective quality of
the synthesized speech. In addition, we found it crucial for efficient model development, even with
a handful of evaluators. An evolving ranking kept during development facilitates tracking multiple
hyperparameter settings.
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Figure 4: Glicko-2 ranking of different configurations of FastPitch. The compared models have
different numbers of attention heads (A), layers (L), and pitch averaged to three values per input
symbol instead of one (3Pitch).

3.3 Pitch and Speaker Conditioning

The pitch contour can be modified during inference to control certain perceived qualities of the
generated speech. For instance, it can be used to increase or decrease F0, put emphasis, or increase
the variance of pitch. Among the published audio samples accompanying this paper we demonstrate
the effects of increasing, decreasing or inverting the frequency around the mean value for a single
utterance. We encourage the reader to listen to them.

Figure 5 shows an example of shifting the frequency by 50Hz. Compared to simple shifting in the
frequency domain, FastPitch preserves the perceived identity of the speaker, and models the action
of vocal chords that happens during voluntary modulation of voice.

0 50 100 0 50 100

(a) F0 shifted uniformly by −50Hz
0 50 100 0 50 100

(a) F0 shifted uniformly by +50Hz

Figure 5: Shifting F0 with FastPitch by adding a constant to the predicted pitch p̂ during inference.
Pairs are displayed: a shifted spectrogram, and the absolute difference between shifted and unshifted
spectrograms. FastPitch demonstrates a high degree of expressiveness, which makes the shifted
samples sound natural.

Further examples in which we use FastPitch to modify pitch are presented in Figure 6. These have
been generated by applying simple, pre-defined transformations to predicted pitch p̂. FastPitch
exhibits a wide range of expressiveness, making non-trivial changes to the output mel-spectrograms
when conditioned on the transformer pitch vectors.

On a single NVIDIA V100 GPU, FastPitch easily achieves real-time factor over 30× for a complete
synthesis from text to audio, when combined with a WaveGlow vocoder, which still is the bottleneck.
Because one pitch value per input symbol is easy to interpret by a human, FastPitch is suitable to
applications like real-time editing of synthesized samples. Pitch contours displayed in Figure 6
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show how a simple interface for this kind of editing might look like, where the pitch values could be
manually adjusted.

0 20 40 60 80 100 120

b n t c r e l e s s i d e d s

0 50 100

(a) Predicted pitch contour with the synthesized mel-spectrogram

0 20 40 60 80 100 120

b n t c r e l e s s i d e d s

0 50 100 0 50 100

(b) Pitch contour amplified with respect to the mean

0 20 40 60 80 100 120

b n t c r e l e s s i d e d s

0 50 100 0 50 100

(b) Pitch contour inverted with respect to the mean

Figure 6: The effect of modifying the pitch contour for the phrase Be not careless in deeds. The
predicted pitch values, at the resolution of a single value per input character, are suitable for building
simplified interfaces for manual adjustments. Here automatic adjustments have been applied: (b)
amplifying the pitch by linearly increasing the distance from the mean over the whole phrase, and
(c) inverting with respect to the mean.

3.3.1 Multiple Speakers

FastPitch is easy to extend to multiple speakers. We have trained a model on the LJSpeech-1.1
dataset with additional internal training data coming from two female speakers: Sally (8330 samples
with the total of 13.6 h), and Helen (18995 samples with the total of 17.3 h). We condition the model
on the speaker by adding a global speaker embedding to the input tokens x. To compare, we have
chosen multi-speaker Tacotron2 and FlowTron [25]. The latter is an auto-regressive flow-based
model. All models have been trained on the same data, and the multi-speaker Tacotron2 has been
used to extract training alignments for FastPitch. The results are summarized in Table 2.

Table 2: Multi-speaker Mean Opinion Scores, evaluated on samples from the LJSpeech devel-
opment set. Tacotron2 and FlowTron models have been trained on mixed grapheme and phoneme
inputs, FastPitch on only character inputs. The models were trained on a three-speaker dataset with
roughly 57 h of training data.

Model MOS

Tacotron2 (Mel + WaveGlow) 3.707± 0.218
FlowTron (Mel + WaveGlow) 3.882± 0.159
FastPitch (Mel + WaveGlow) 4.071± 0.164
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3.4 Discussion

The success of the Transformer architecture in domains of relatively low bandwidth such as language
modelling or translation, in part comes from the ability to memorize and combine small fragments
of the training data, even more so than other architectures. The output predictions of the FF Trans-
former are made in parallel and independently, which pushes the model towards modeling the mean
pronunciation, rather than focusing on a specific way of pronunciation chosen beforehand.

We observed this behavior, that is the reliance on interpolation between memorized samples and
collapsing between different ways of a pronunciation, in the original FastSpeech. Conditioning on
the aggregated pitch seems resolve much of these problems, making the model outputs more coher-
ent, and focused sharply on a single pronunciation. FastSpeech was reported to have an improved
quality with knowledge distillation of mel-spectrogram targets from a pre-trained Transformer-TTS
model [15]. We conjecture that the curated modes of pronunciation of certain phrases, learned by
the Transformer-TTS model, were easier training targets for the parallel FastSpeech, and in some
cases prevented the collapse to the mean pronunciation.

4 Related Work

The predominant paradigm in text-to-speech is two-stage synthesis: first producing mel-scale spec-
trograms from text, and then the actual sound waves with a vocoder model [18, 23, 14]. In attempts
to speed up the synthesis, parallel models have been explored. In addition to Transformer models in-
vestigated in this work [21], convolutional GAN-TTS [2] is able to synthesize raw audio waveforms
with state-of-the-art quality. It is conditioned on linguistic and pitch features.

The efforts in parallelizing existing models include duration prediction similar to FastSpeech, ap-
plied to Tacotron [22] or a generative flow model Glow-TTS [10]. Explicit modeling of duration
has rekindled the interest in automatic alignment in order to relieve from bootstrapping the models
with forced alignments. These approaches typically use dynamic programming algorithms associ-
ated with inference and training of HMMs. Glow-TTS aligns with Viterbi paths, and FastSpeech
has been improved with a variant of the forward-backward algorithm [31].

Lastly, we describe the details of explicit neural modeling of pitch introduced alongside a neu-
ral TTS voice conversion model [11], which shares similarities with other models from IBM Re-
search [6, 12]. An LSTM-based Variational Autoencoder generation network modeled prosody, and
pitch was calculated with a separate tool prior to the training. Prosody information was encoded in
vectors of four values: log-duration, start log-pitch, end log-pitch, and log-energy. There were three
prosody vectors for every phoneme, corresponding to the HMM states from the auxiliary model
which supplied alignments. Apart from prosody vectors, sparse textual features were used as inputs.

5 Conclusions

We have presented FastPitch, a parallel text-to-speech model based on FastSpeech, able to rapidly
synthesize high-fidelity mel-scale spectrograms with a high degree of control over the prosody. The
model demonstrates how conditioning on prosodic information can significantly improve the con-
vergence and quality of synthesized speech in a feed-forward model, enabling more coherent pro-
nunciation across its independent outputs, and lead to state-of-the-art results. Our pitch conditioning
method is simpler than many of the approaches known from the literature. It does not introduce an
overhead, and opens up possibilities for practical applications in adjusting the prosody interactively,
as the model is fast, highly expressive, and presents potential for multi-speaker scenarios.
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